ECOCPAK v0.9
Data Structures | Typedefs | Enumerations | Functions
ecocpak Namespace Reference

ecocpak namespace More...

Data Structures

class  ClassData
class  Classifier
class  Threshold
class  op_kmeans
class  Classifier_ncc
class  Classifier_flda
class  Classifier_svm
class  Classifier_weak
class  Classifier_adaBoost
class  Classifier_ls
class  Classifier_custom

Typedefs

typedef struct svm_node ** sparse_mat

Enumerations

enum  {
  ONE_VS_ONE, ONE_VS_ALL, DECOC, SUBDECOC,
  DENSE_RANDOM, SPARSE_RANDOM, ECOC_ONE, FOREST_ECOC,
  CUSTOM_CODING
}
enum  {
  HAMMING, EUCLIDEAN, LAPLACIAN, HAMMING_ATTENUATED,
  EUCLIDEAN_ATTENUATED, LINEAR_LOSS_WEIGHTED_DECODING, EXPONENTIAL_LOSS_WEIGHTED_DECODING, LINEAR_LOSS_BASED_DECODING,
  EXPONENTIAL_LOSS_BASED_DECODING, BETA_DENSITY_DECODING, PROBABILISTIC_BASED_DECODING, INVERSE_HAMMING_DECODING,
  CUSTOM_DECODING
}
enum  { FQMI, FLDR, CUSTOM_CRITERION }
enum  { PAIR, ALL_CLASSES }
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...
enum  {
  NCC, FLDA, SVM, ADABOOST,
  LEAST_SQUARES, CUSTOM_CLASSIFIER
}
 enumeration for classifier's type More...

Functions

bool contains (const ucolvec &A, const u32 n, const u32 i)
ucolvec complement (const ucolvec &A, const u32 sizeU)
vector< ClassDatacreate_class_vector (const mat &samples, const icolvec &labels)
mat create_samples_matrix (const vector< ClassData > &v)
void create_samples_matrix (const vector< ClassData > &v, mat &samples, icolvec &labels)
void create_samples_matrix (const ClassData &first_class, const ClassData &second_class, mat &samples, icolvec &labels)
void create_samples_matrix (const vector< ClassData > &v, mat &samples, icolvec &labels, ucolvec &n_per_class)
ClassData merge_classes_vector (const vector< ClassData > &v)
ClassData merge_selected_classes (const vector< ClassData > &v, const ucolvec &s)
vector< ClassDatasplit_class (const ClassData &c, const ucolvec &indices, const ucolvec &samples_per_cluster, const int are_valid)
ucolvec complement_sffs (const ucolvec &A, const u32 curSubsetSize)
u32 linear_loss_weighted_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &ecoc_matrix, const mat &test_set_samples, const uvec &test_set_labels, uvec &results, umat &confussion)
u32 exponential_loss_weighted_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &ecoc_matrix, const mat &test_set_samples, const uvec &test_set_labels, uvec &results, umat &confussion)
double custom_metric (rowvec test_code, rowvec class_code)
u32 custom_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &coding_matrix, const mat &test_samples, const ucolvec &test_set_labels, uvec &predictions, umat &confussion)
void sigmoid_training (double &A, double &B, const vec f, const u32 n_pos, const u32 n_neg)
u32 probabilistic_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &coding_matrix, const mat &test_samples, const ucolvec &test_set_labels, uvec &predictions, umat &confussion)
irowvec sign (const rowvec &A)
irowvec sign (const rowvec &A, const irowvec &B)
double beta_density_metric (const irowvec &test_code, const irowvec &class_code, const double u=0.333333, const u32 n_points=201)
u32 decode_codeword (const rowvec &codeword, const imat &coding_matrix, const int decoding_strategy)
void decode (const mat &Xt, const uvec &lt, const imat &coding_matrix, const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const int decoding_option, uvec &predictions, u32 &n_missed, double &error, umat &confussion)
 Decoding procedure.
sparse_mat dense_to_sparse (const mat &X)
void delete_sparse_matrix (sparse_mat A, const u32 n_rows)
void delete_sparse_matrix (sparse_mat A, const u32 n_rows, const struct svm_model *model)
svm_model modelcpy (svm_model *m)
mat sparse_to_dense (struct svm_node **const X, const u32 n_rows, const u32 n_cols)
template<typename eT1 , typename eT2 >
Col< u32 > process_labels (const Mat< eT1 > &labels, Col< eT2 > &n_samples_each_class, u32 &n_classes)
template<typename eT1 >
Col< u32 > process_labels (const Mat< eT1 > &labels, u32 &n_classes)
template<typename eT1 >
Col< u32 > process_labels (const Mat< eT1 > &labels)
template<typename T1 >
void kmeans (Col< u32 > &indices_out, Col< u32 > &ranks_out, Mat< typename T1::elem_type > &centroids_out, const Base< typename T1::elem_type, T1 > &X, const u32 k, const typename T1::pod_type lr=0.01)
mat subClasses (ucolvec &inds, ucolvec &ranks, const mat &samples)
Classifierconstruct_classifier (const mat &A, const mat &B, const int classifiers_type)
double compute_sigma (const vector< ClassData > &classes_vector)
template<typename T1 , typename T2 >
T1::elem_type fqmi (const Base< typename T1::elem_type, T1 > &X, const Base< typename T2::elem_type, T2 > &Y, const typename T1::elem_type sigma)
template<typename T1 >
T1::elem_type fldr (const Base< typename T1::elem_type, T1 > &X, const Base< typename T1::elem_type, T1 > &Y)
double criterion_custom (const vector< ClassData > &classes_vector, const ucolvec &indexPtr, const u32 curSubsetSize)
double criterion_fqmi (const vector< ClassData > &classes_vector, const ucolvec &indexPtr, const u32 curSubsetSize, const double sigma)
double criterion_fldr (const vector< ClassData > &classes_vector, const ucolvec &indexPtr, const u32 curSubsetSize)
double criterion (const vector< ClassData > &class_vector, const ucolvec &indexPtr, const u32 curSubSetSize, const u32 criterion_option, const double sigma)
ucolvec sffs (const vector< ClassData > &classes_vector, const u32 crit)
Classifiercreate_classifier (const ClassData &A, const ClassData &B, const u32 classifiers_option, double &training_error)
Classifiercreate_classifier (const ClassData &A, const ClassData &B, const u32 classifiers_option)
Classifiercreate_classifier (const mat &A, const mat &B, const u32 classifiers_option)
void coding_matrix_update (imat &coding_matrix, const vector< ClassData > &class_vector, vector< ClassData > &split_classes_vector, u32 indx)
void update_class_tracker (vector< colvec > &class_tracker, const vector< ClassData > &class_vector, const u32 indx, vector< ClassData > &split_classes_vector, vector< ClassData > &classes_created_vector)
bool save_classifier (Classifier *c, const vector< ClassData > &class_vector, const ucolvec &best_set_indices, const ucolvec &complement_set_indices, vector< Classifier * > &classifiers_vector)
bool save_classifier (Classifier *c, const vector< ClassData > &class_vector, vector< Classifier * > &classifiers_vector)
bool contain_same_classes (const ucolvec &A, const vector< ClassData > &B)
void direct_subclass_encoding (const vector< ClassData > &class_vector, const Threshold &thres, const int criterion_option, const int classifiers_option, imat &coding_matrix, vector< Classifier * > &classifiers_vector, vector< ClassData > &classes_created_vector, vector< colvec > &class_tracker, vector< ucolvec > &problem_tracker)
void subclass_encoding (const mat &samples, const icolvec &labels, const Threshold &thres, const int criterion_option, const int classifiers_option, imat &coding_matrix, vector< Classifier * > &classifiers_vector, vector< ClassData > &classes_created_vector)
void direct_decoc_encoding (const vector< ClassData > &class_vector, const int criterion_option, const int classifiers_option, vector< Classifier * > &classifiers_vector)
void decoc_coding (const vector< ClassData > &class_vector, const int criterion_option, const int classifiers_option, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
u32 one_vs_one (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_type, const bool verbose, ofstream &verbose_output, double &execution_time)
u32 one_vs_all (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_type, const bool verbose, ofstream &verbose_output, double &execution_time)
u32 decoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_option, const int criterion_option, const bool verbose, ofstream &verbose_output, double &execution_time)
 Discriminant Error Correcting Output Codes (DECOC) training and testing procedure.
u32 subdecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const Threshold &thres, const int decoding_strategy, const int classifiers_type, const int criterion_option, const bool verbose, imat &coding_matrix, ofstream &verbose_output, double &execution_time)
 Discriminant Error Correcting Output Codes with subclasses (SUBDECOC) training and testing procedure .
imat create_dense_matrix_from_rand (const double *random_matrix, const u32 n_rows, const u32 n_cols)
bool identical_columns_dense (const imat &coding_matrix)
imat create_dense_random_matrix (const u32 n_classes, const u32 n_classifiers, const u32 n_matrices)
u32 dense_random_ecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_type, const u32 n_matrices, const u32 n_desired_classifiers, const bool verbose, ofstream &verbose_output, double &execution_time)
imat create_sparse_matrix_from_rand (const double *random_matrix, const u32 n_rows, const u32 n_cols)
bool identical_columns_sparse (const imat &coding_matrix)
imat create_sparse_random_matrix (const u32 n_classes, const u32 n_classifiers, const u32 n_matrices)
u32 sparse_random_ecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_type, const u32 n_matrices, const u32 n_desired_classifiers, const bool verbose, ofstream &verbose_output, double &execution_time)
void one_vs_all_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
void one_vs_one_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
void decoc_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, const int criterion_option, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
void subdecoc_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, const int criterion_option, const Threshold &thres, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
void dense_random_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, const u32 n_matrices, const u32 n_desired_classifiers, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
void sparse_random_ecocone (vector< ClassData > &classes_vector, const int classifiers_type, const u32 n_matrices, const u32 n_desired_classifiers, imat &coding_matrix, vector< Classifier * > &classifiers_vector)
u32 ecoc_one (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const Threshold &thres, const int decoding_strategy, const int classifiers_type, const int criterion_option, const u32 n_matrices, const u32 n_desired_classifiers, const double validation, const int init_coding_strategy, const int ecocone_mode, const u32 max_iter, const double epsilon, const double wv, const bool verbose, ofstream &verbose_output, double &elapsed_time)
 ECOC One training and testing procedure.
imat permvec (const ivec &A)
 Creates permutation vectors of input binary vector.
void append_tree (const vector< ClassData > &classes_vector, const ivec &root, const int criterion_option, const int classifiers_type, imat &M, vector< Classifier * > &classifiers_vector)
 Appends tree structure to coding matrix M.
u32 forest_ecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const int decoding_strategy, const int classifiers_type, const int criterion_option, const u32 n_forests, const bool verbose, ofstream &verbose_output, double &elapsed_time)
 Forest ECOC training and testing procedure.
void group_classes (const ivec &labels, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
double cross_validation (const mat &samples, const icolvec &labels, const imat &codmat, const Threshold &thres, const u32 n_folds, const u32 n_classes, const u32 criterion_option, const u32 classifier_option, const int coding_strategy, const int decoding_strategy, const u32 n_matrices, const u32 n_desired_classifers, const double validation, const int init_coding_strategy, const int ecocone_mode, const u32 max_iter, const double epsilon, const double wvalidation, const bool verbose, double &mean_rows, double &mean_cols, double &elapsed_time, ofstream &output)
double cvonesvsone (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const bool verbose, double &elapsed_time, ofstream &output)
double cvonesvsall (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const bool verbose, double &elapsed_time, ofstream &output)
double cvdecoc (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const u32 criterion_option, const bool verbose, double &elapsed_time, ofstream &output)
double cvsubdecoc (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const u32 criterion_option, const Threshold &thres, const bool verbose, double &mr, double &mc, double &elapsed_time, ofstream &output)
double cvsparserand (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const u32 n_matrices, const u32 n_desired_classifers, const bool verbose, double &elapsed_time, ofstream &output)
double cvdenserand (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const u32 n_matrices, const u32 n_desired_classifers, const bool verbose, double &elapsed_time, ofstream &output)
double cvecocone (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const double validation, const int init_coding_strategy, const int ecocone_mode, const u32 max_iter, const double epsilon, const double wvalidation, const bool verbose, double &elapsed_time, ofstream &output)
double cvforest (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const u32 n_trees, const bool verbose, double &elapsed_time, ofstream &output)
double cvcustom (const mat &samples, const icolvec &labels, const u32 n_folds, const u32 n_classes, const u32 classifier_option, const int decoding_strategy, const imat &codmat, const bool verbose, double &elapsed_time, ofstream &output)
void uci_glass (mat &samples, ucolvec &labels)
mat uci_glass ()
void uci_iris (mat &samples, ucolvec &labels)
mat uci_iris ()
void load_dataset_from_file (const char *filename, mat &samples, icolvec &labels, u32 &n_classes)
void load_dataset_from_file (const char *filename, mat &samples, icolvec &labels)

Detailed Description

ecocpak namespace


Enumeration Type Documentation

anonymous enum
Enumerator:
ONE_VS_ONE 
ONE_VS_ALL 
DECOC 
SUBDECOC 
DENSE_RANDOM 
SPARSE_RANDOM 
ECOC_ONE 
FOREST_ECOC 
CUSTOM_CODING 
anonymous enum
Enumerator:
HAMMING 
EUCLIDEAN 
LAPLACIAN 
HAMMING_ATTENUATED 
EUCLIDEAN_ATTENUATED 
LINEAR_LOSS_WEIGHTED_DECODING 
EXPONENTIAL_LOSS_WEIGHTED_DECODING 
LINEAR_LOSS_BASED_DECODING 
EXPONENTIAL_LOSS_BASED_DECODING 
BETA_DENSITY_DECODING 
PROBABILISTIC_BASED_DECODING 
INVERSE_HAMMING_DECODING 
CUSTOM_DECODING 
anonymous enum
Enumerator:
FQMI 
FLDR 
CUSTOM_CRITERION 
anonymous enum
Enumerator:
PAIR 
ALL_CLASSES 
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerator Defines