ECOCPAK v0.9
Functions
Fn_probabilistic_decoding

Functions

void ecocpak::sigmoid_training (double &A, double &B, const vec f, const u32 n_pos, const u32 n_neg)
u32 ecocpak::probabilistic_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &coding_matrix, const mat &test_samples, const ucolvec &test_set_labels, uvec &predictions, umat &confussion)
u32 probabilistic_decoding (const vector< Classifier * > &classifiers_vector, const vector< ClassData > &classes_vector, const imat &coding_matrix, const mat &test_samples, const ucolvec &test_set_labels, uvec &predictions, umat &confussion)

Function Documentation

u32 ecocpak::probabilistic_decoding ( const vector< Classifier * > &  classifiers_vector,
const vector< ClassData > &  classes_vector,
const imat &  coding_matrix,
const mat &  test_samples,
const ucolvec &  test_set_labels,
uvec &  predictions,
umat &  confussion 
)
  • Probabilistic decoding strategy.
  • Input Arguments:
    • classifiers_vector : Vector of classifiers.
    • coding_matrix : Coding matrix.
    • test_set_samples : 2D matrix of test samples
    • test_set_labels : Labels vector of test samples.
  • Outputs Arguments:
    • Void.
  • Return Argument:
    • Integral value which denotes the number of misclassified test samples.
u32 probabilistic_decoding ( const vector< Classifier * > &  classifiers_vector,
const vector< ClassData > &  classes_vector,
const imat &  coding_matrix,
const mat &  test_samples,
const ucolvec &  test_set_labels,
uvec &  predictions,
umat &  confussion 
)
  • Probabilistic decoding strategy.
  • Input Arguments:
    • classifiers_vector : Vector of classifiers.
    • coding_matrix : Coding matrix.
    • test_set_samples : 2D matrix of test samples
    • test_set_labels : Labels vector of test samples.
  • Outputs Arguments:
    • Void.
  • Return Argument:
    • Integral value which denotes the number of misclassified test samples.
void ecocpak::sigmoid_training ( double &  A,
double &  B,
const vec  f,
const u32  n_pos,
const u32  n_neg 
)
  • This is an optimization algorithm for sigmoid training. The original pseudocode of this algorithm can be found in: "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likehood Methods., John C. Platt., In advances in large margin classifiers., MIT Press, (1999))".
  • Input Arguments:
    • f : Vector of classifiers outputs.
    • n_pos : Number of possitive samples.
    • n_neg : Number of negative samples.
  • Output Arguments:
    • A : First parameter of sigmoid.
    • B : Second parameter of sigmoid.
  • Return Argument:
    • Void.
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerator Defines