ECOCPAK v0.9
Functions
Fn_subdecoc

Functions

u32 ecocpak::subdecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const Threshold &thres, const int decoding_strategy, const int classifiers_type, const int criterion_option, const bool verbose, imat &coding_matrix, ofstream &verbose_output, double &execution_time)
 Discriminant Error Correcting Output Codes with subclasses (SUBDECOC) training and testing procedure .
u32 subdecoc (const mat &training_samples, const icolvec &training_labels, const mat &testing_samples, const icolvec &testing_labels, const Threshold &thres, const int decoding_strategy, const int classifiers_type, const int criterion_option, const bool verbose, imat &coding_matrix, ofstream &verbose_output, double &execution_time)
 Discriminant Error Correcting Output Codes with subclasses (SUBDECOC) training and testing procedure .

Function Documentation

u32 ecocpak::subdecoc ( const mat &  training_samples,
const icolvec &  training_labels,
const mat &  testing_samples,
const icolvec &  testing_labels,
const Threshold thres,
const int  decoding_strategy,
const int  classifiers_type,
const int  criterion_option,
const bool  verbose,
imat &  coding_matrix,
ofstream &  verbose_output,
double &  execution_time 
)

Discriminant Error Correcting Output Codes with subclasses (SUBDECOC) training and testing procedure .

  • Input Arguments:
    • training_samples : A 2D input matrix where its rows represent training sample vectors.
    • training_labels : The respective class labels of training_samples input matrix.
    • testing_samples : A 2D input matrix where its rows represent testing sample vectors.
    • testing_labels : The respective class labels of testing_samples input matrix.
    • thres : Threshold object.
    • decoding_strategy : User's option specifying the type of decoding method that will be used.
    • classifiers_type : Type of classifier.
    • criterion_option : Criterion option (FQMI or FLDR).
  • Output Arguments:
    • coding_matrix : Coding matrix.
    • classifiers_vector : Vector of classifiers objects.
    • execution_time : Execution time.
  • Return Argument:
    • Number of misclassified test samples.
u32 subdecoc ( const mat &  training_samples,
const icolvec &  training_labels,
const mat &  testing_samples,
const icolvec &  testing_labels,
const Threshold thres,
const int  decoding_strategy,
const int  classifiers_type,
const int  criterion_option,
const bool  verbose,
imat &  coding_matrix,
ofstream &  verbose_output,
double &  execution_time 
)

Discriminant Error Correcting Output Codes with subclasses (SUBDECOC) training and testing procedure .

  • Input Arguments:
    • training_samples : A 2D input matrix where its rows represent training sample vectors.
    • training_labels : The respective class labels of training_samples input matrix.
    • testing_samples : A 2D input matrix where its rows represent testing sample vectors.
    • testing_labels : The respective class labels of testing_samples input matrix.
    • thres : Threshold object.
    • decoding_strategy : User's option specifying the type of decoding method that will be used.
    • classifiers_type : Type of classifier.
    • criterion_option : Criterion option (FQMI or FLDR).
  • Output Arguments:
    • coding_matrix : Coding matrix.
    • classifiers_vector : Vector of classifiers objects.
    • execution_time : Execution time.
  • Return Argument:
    • Number of misclassified test samples.
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerator Defines