ECOCPAK v0.9
fn_probabilistic_decoding.hpp
Go to the documentation of this file.
00001 // Copyright (C) 2011 the authors listed below
00002 // http://ecocpak.sourceforge.net
00003 //
00004 // Authors:
00005 // - Dimitrios Bouzas (bouzas at ieee dot org)
00006 // - Nikolaos Arvanitopoulos (niarvani at ieee dot org)
00007 // - Anastasios Tefas (tefas at aiia dot csd dot auth dot gr)
00008 //
00009 // This file is part of the ECOC PAK C++ library. It is
00010 // provided without any warranty of fitness for any purpose.
00011 //
00012 // You can redistribute this file and/or modify it under
00013 // the terms of the GNU Lesser General Public License (LGPL)
00014 // as published by the Free Software Foundation, either
00015 // version 3 of the License or (at your option) any later
00016 // version.
00017 // (see http://www.opensource.org/licenses for more info)
00018 
00019 
00022 
00023 
00024 
00043 void
00044 sigmoid_training
00045   (
00046   double& A,
00047   double& B,
00048   const vec f,
00049   const u32 n_pos,
00050   const u32 n_neg
00051   )
00052   {
00053   // initialize sigmoid's parameters
00054   A = 0;
00055   B = log(double(n_neg + 1) / double(n_pos + 1));
00056 
00057   // initialize auxiliary parameters
00058   double hiTarget = double(n_pos + 1) / double(n_pos + 2);
00059   double loTarget = 1.0 / double(n_neg + 2);
00060   double lambda = 1e-3;
00061   double olderr = 1e300;
00062 
00063   // temporary vector to store current estimate of probability of
00064   // examples
00065   vec pp(f.n_elem);
00066   pp.fill((double(n_pos + 1) / double(n_neg + n_pos + 2)));
00067 
00068 
00069   // initialize auxiliary counter
00070   int count = 0;
00071 
00072   // iterate 100 times
00073   for(u32 iter = 0; iter < 100; iter++)
00074     {
00075     // initialize auxiliary loop variables
00076     double a = 0.0;
00077     double b = 0.0;
00078     double c = 0.0;
00079     double d = 0.0;
00080     double e = 0.0;
00081     double t = 0.0;
00082 
00083     // First, compute Hessian and gradient of error function with
00084     // respect to A and B
00085     for(u32 i = 0; i < f.n_elem; i++)
00086       {
00087 
00088       // if ith example is a positive example set t to hiTarget
00089       // otherwise set t to loTarget
00090       (i < n_pos)? t = hiTarget : t = loTarget;
00091 
00092       double d1 = pp[i] - t;
00093       double d2 = pp[i] * (1 - pp[i]);
00094 
00095       a = a + f[i] * f[i] * d2;
00096       b = b + d2;
00097       c = c + f[i] * d2;
00098       d = d + f[i] * d1;
00099       e = e + d1;
00100       }
00101 
00102     // if gradient is really tiny, then stop
00103     if(abs(d) < 1e-9 && abs(e) < 1e-9)
00104       {
00105       break;
00106       }
00107 
00108     // initialize
00109     double oldA = A;
00110     double oldB = B;
00111     double err  = 0.0;
00112 
00113     // loop until goodness of fit increases
00114     while(true)
00115       {
00116       // compute determinant
00117       double D = ((a + lambda) * (b + lambda)) - (c * c);
00118 
00119       // if determinant of Hessian is equal to zero
00120       if(D == 0)
00121         {
00122         // increase stabilizer
00123         lambda *= 10.0;
00124         continue;
00125         }
00126 
00127       // update A and B
00128       A  = oldA + ((((b + lambda) * d) - (c * e)) / D);
00129       B  = oldB + ((((a + lambda) * e) - (c * d)) / D);
00130 
00131       // initialize error
00132       err = 0.0;
00133 
00134       // loop to compute the goodness of fit
00135       for(u32 i = 0; i < f.n_elem; i++)
00136         {
00137         // compute sigmoid
00138         double p = 1.0 / (1.0 + exp((f[i] * A) + B));
00139 
00140         pp[i] = p;
00141 
00142         // make sure log(0) returns -200
00143         err -= ((t * log(p)) + ((1 - t) * log(1 - p)));
00144         }
00145 
00146       if(err < olderr * (1 + 1e-7))
00147         {
00148         // decrease stabilizer
00149         lambda *= 0.1;
00150         break;
00151         }
00152 
00153       // error did not decrease: increase stabilizer by factor of 10 and
00154       // try again
00155       lambda *= 10.0;
00156 
00157       // something is broken, break loop
00158       if(lambda >= 1e6)
00159         {
00160         break;
00161         }
00162 
00163       }
00164 
00165     double diff  = err - olderr;
00166     double scale = 0.5 * (err + olderr + 1.0);
00167 
00168     if(diff > (-1e-3 * scale) && diff < (1e-7 * scale))
00169       {
00170       count++;
00171       }
00172     else
00173       {
00174       count = 0;
00175       }
00176 
00177     olderr = err;
00178 
00179     if(count == 3)
00180       {
00181       break;
00182       }
00183 
00184     }
00185 
00186   }
00187 
00188 
00189 
00205 u32
00206 probabilistic_decoding
00207   (
00208   const vector<Classifier*>& classifiers_vector,
00209   const vector<ClassData>& classes_vector,
00210   const imat& coding_matrix,
00211   const mat& test_samples,
00212   const ucolvec& test_set_labels,
00213   uvec& predictions,
00214   umat& confussion
00215   )
00216   {
00217   #ifdef NCURSES_OUTPUT
00218   // print status header
00219   mvaddstr(3, 0, "Computing Probabilistic Decoding:");
00220   refresh();
00221   #endif
00222 
00223 // ================================================================== //
00224 // ||                  DECLARATIONS - INITIALIZATION               || //
00225 // ================================================================== //
00226 
00227   // number of test set samples
00228   const u32 n_test_samples = test_samples.n_rows;
00229 
00230   // number of coding matrix rows (i.e., number of classes)
00231   const u32 n_rows = coding_matrix.n_rows;
00232 
00233   // number of coding matrix columns (i.e., number of classifiers)
00234   const u32 n_cols = coding_matrix.n_cols;
00235 
00236   // number of missclassified test samples -- initialization
00237   u32 n_missed = 0;
00238 
00239 // ================================================================== //
00240 // ||               BEGIN MAIN PART OF THE ALGORITHM               || //
00241 // ================================================================== //
00242 
00243   // ================================================================ //
00244   // || Step No.1: Compute \alpha. \alpha denotes the probability  || //
00245   // ||            mass dispersed over invalid codes.              || //
00246   // ================================================================ //
00247 
00248     // number of all possible codewords
00249     double p = pow(2.0, double(n_cols));
00250 
00251     // number of valid codewords for current coding matrix
00252     double d = 0.0;
00253 
00254     // iterate through rows of coding matrix to find the zero possitions
00255     // and compute the number of valid codewords
00256     for(u32 i = 0; i < n_rows; i++)
00257       {
00258       d += pow(2.0, double(accu(coding_matrix.row(i) == 0)));
00259       }
00260 
00261     // compute alpha (i.e., probability of invalid codeword)
00262     double alpha = double(p - d) / double(p * n_rows);
00263 
00264   // ================================================================ //
00265   // || Step No.2:  Compute A's and B's of sigmoid for each        || //
00266   // ||             binary classifier.                             || //
00267   // ================================================================ //
00268 
00269     // allocate A's and B's matrix -- 1st column A's, 2nd column B's
00270     mat AB = zeros<mat>(n_cols, 2);
00271 
00272     // iterate through the number of the binary classifiers
00273     for(u32 i = 0; i < n_cols; i++)
00274       {
00275       // number of classifier's training samples
00276       const u32 n_train =
00277         classifiers_vector[i]->n_pos + classifiers_vector[i]->n_neg;
00278 
00279       // allocate vector of classifier's responses
00280       vec f = zeros<vec>(n_train);
00281 
00282       // classifier's responses index
00283       u32 ind = 0;
00284 
00285       // iterate through possitive classes of current classifier
00286       for(u32 j = 0; j < classifiers_vector[i]->pos.size(); j++)
00287         {
00288 
00289         // pointer to current class
00290         ClassData* tmp = classifiers_vector[i]->pos[j];
00291 
00292         // iterate through current class samples
00293         for(u32 k = 0; k < tmp->Samples(); k++)
00294           {
00295           f[ind] = classifiers_vector[i]->predict((tmp->Data()).row(k));
00296           ind++;
00297           }
00298 
00299         }
00300 
00301       // iterate through negative classes of current classifier
00302       for(u32 j = 0; j < classifiers_vector[i]->neg.size(); j++)
00303         {
00304 
00305         // pointer to current class
00306         ClassData* tmp = classifiers_vector[i]->neg[j];
00307 
00308         // iterate through current class samples
00309         for(u32 k = 0; k < tmp->Samples(); k++)
00310           {
00311           f[ind] = classifiers_vector[i]->predict((tmp->Data()).row(k));
00312           ind++;
00313           }
00314 
00315         }
00316 
00317       // compute A and B of current classifier
00318       sigmoid_training
00319         (
00320         AB(i,0),
00321         AB(i,1),
00322         f,
00323         classifiers_vector[i]->n_pos,
00324         classifiers_vector[i]->n_neg
00325         );
00326 
00327       }
00328 
00329   // ================================================================ //
00330   // || Step No.3:  Compute conditional probabilities and assign   || //
00331   // ||             test sample to winning class                   || //
00332   // ================================================================ //
00333 
00334     // iterate through test samples
00335     for(u32 i = 0; i < n_test_samples; i++)
00336       {
00337       // winning coding matrix row -- initialize to first class
00338       u32 winner = 1;
00339 
00340       // auxiliary threshold
00341       double t = numeric_limits<double>::max();
00342 
00343       // iterate through number of classes
00344       for(u32 j = 0; j < n_rows; j++)
00345         {
00346 
00347         // initialize conditional probability
00348         double cp = 1.0;
00349 
00350         // iterate through number of classifiers
00351         for(u32 k = 0; k < n_cols; k++)
00352           {
00353           if(coding_matrix(j,k) != 0)
00354             {
00355             cp *= (1.0 / (1.0 + exp(coding_matrix(j,k) * (AB(k,0) * classifiers_vector[k]->predict(test_samples.row(i)) + AB(k,1)))));
00356             }
00357 
00358           }
00359 
00360         // add alpha parameter
00361         cp += alpha;
00362 
00363         // compute the log of the probability
00364         cp = -log(cp);
00365 
00366         // update winning row
00367         if(cp < t)
00368           {
00369           t = cp;
00370           winner = j + 1;
00371           }
00372         else
00373           {
00374           // in ties random assignment for unbiased estimation
00375           if(cp == t)
00376             {
00377             if((std::rand() % 2) == 0)
00378               {
00379               t = cp;
00380               winner = j + 1;
00381               }
00382 
00383             }
00384 
00385           }
00386 
00387         }
00388 
00389       predictions[i] = winner;
00390 
00391       // if current test sample missclassified increase missclassified
00392       // counter
00393       if(classes_vector[winner - 1].ClassLabel() != test_set_labels[i])
00394         {
00395         n_missed++;
00396         }
00397 
00398       confussion(classes_vector[winner - 1].ClassLabel() - 1, test_set_labels[i] - 1)++;
00399       }
00400 
00401 // ================================================================== //
00402 // ||                END MAIN PART OF THE ALGORITHM                || //
00403 // ================================================================== //
00404 
00405   return n_missed;
00406   }
00407 
00408 
00409 
All Data Structures Namespaces Files Functions Variables Typedefs Enumerator Defines